Point sequences

Distribution of primes and correlations of zeros 00000000

Some topics at the interface of number theory, probability, combinatorics, and analysis

Aled Walker

Tuesday November 8^{th} 2022

Point sequences

Distribution of primes and correlations of zeros 00000000

Point sequences 000000000 Distribution of primes and correlations of zeros 00000000

Lunchtime talk = three-course meal

Point sequences

Distribution of primes and correlations of zeros 00000000

Lunchtime talk = three-course meal

Starter

Sets of integers with large GCDs (\approx combinatorial, 10 mins);

Main course

Local distribution of point sequences ($\approx probabilistic$, 20 mins);

Dessert

Distribution of primes in short intervals, and zeros of $\zeta(s)$ (\approx number-theoretic, 10 mins);

Point sequences

Distribution of primes and correlations of zeros 00000000

Warm-up

Question 1

Suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for every pair $(a, a') \in A \times A$. How large can |A| be?

Point sequences 000000000 Distribution of primes and correlations of zeros 00000000

Warm-up

Question 1

Suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for every pair $(a, a') \in A \times A$. How large can |A| be?

The example $A = \{n \leq X : D|n\}$ shows that $|A| \ge X/D$ is possible.

Point sequences

Distribution of primes and correlations of zeros 00000000

Warm-up

Question 1

Suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for every pair $(a, a') \in A \times A$. How large can |A| be?

The example $A = \{n \leq X : D|n\}$ shows that $|A| \ge X/D$ is possible.

Conjecture

Suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for every pair $(a, a') \in A \times A$. Then |A| = O(X/D).

Point sequences

Distribution of primes and correlations of zeros 00000000

Warm-up

Question 1

Suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for every pair $(a, a') \in A \times A$. How large can |A| be?

The example $A = \{n \leq X : D|n\}$ shows that $|A| \ge X/D$ is possible.

Conjecture

Suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for every pair $(a, a') \in A \times A$. Then |A| = O(X/D).

Solution (Z. Chase): Conjecture is true (pigeonhole).

Point sequences

Distribution of primes and correlations of zeros $_{\rm OOOOOOOO}$

The 'real' question

Question 2

Let $\delta > 0$, and suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for $\delta |A|^2$ pairs $(a, a') \in A \times A$. Is it true that $|A| = O_{\delta}(X/D)$?

Point sequences 00000000 Distribution of primes and correlations of zeros 00000000

The 'real' question

Question 2

Let $\delta > 0$, and suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for $\delta |A|^2$ pairs $(a, a') \in A \times A$. Is it true that $|A| = O_{\delta}(X/D)$?

Theorem (Green–W. 2021)

Under above hypotheses, $|A| \ll O(\delta^{-1.001} X/D)$.

Point sequences

Distribution of primes and correlations of zeros $_{\rm OOOOOOOO}$

The 'real' question

Question 2

Let $\delta > 0$, and suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for $\delta |A|^2$ pairs $(a, a') \in A \times A$. Is it true that $|A| = O_{\delta}(X/D)$?

Theorem (Green–W. 2021)

Under above hypotheses, $|A| \ll O(\delta^{-1.001}X/D)$.

Proof method:

• study structure of the bipartite graph $(A \times A, \mathcal{E})$, where $(a, a') \in E$ if $gcd(a, a') \ge D$;

Point sequences 000000000 Distribution of primes and correlations of zeros 00000000

The 'real' question

Question 2

Let $\delta > 0$, and suppose $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for $\delta |A|^2$ pairs $(a, a') \in A \times A$. Is it true that $|A| = O_{\delta}(X/D)$?

Theorem (Green–W. 2021)

Under above hypotheses, $|A| \ll O(\delta^{-1.001}X/D)$.

Proof method:

- study structure of the bipartite graph $(A \times A, \mathcal{E})$, where $(a, a') \in E$ if $gcd(a, a') \ge D$;
- for each prime p, iterate according to whether p|a and p|a' (4 subgraphs...).

Point sequences 00000000 Distribution of primes and correlations of zeros ${\tt ooooooooo}$

A 'structural' question

Point sequences 00000000 Distribution of primes and correlations of zeros 00000000

A 'structural' question

Must all the 'greatest common divisor' mass be explained by a single large common divisor?

Distribution of primes and correlations of zeros 00000000

A 'structural' question

Must all the 'greatest common divisor' mass be explained by a single large common divisor?

Question 3, Koukoulopoulos-Maynard

Suppose that $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for $0.01|A|^2$ pairs $(a, a') \in A \times A$ and $|A| \gg X/D$. Must there exist some d with $d \gg D$ and $|\{a \in A : d|a\}| \gg X/D$?

Distribution of primes and correlations of zeros 00000000

A 'structural' question

Must all the 'greatest common divisor' mass be explained by a single large common divisor?

Question 3, Koukoulopoulos-Maynard

Suppose that $A \subset [1, X]$ is a set of natural numbers with $gcd(a, a') \ge D$ for $0.01|A|^2$ pairs $(a, a') \in A \times A$ and $|A| \gg X/D$. Must there exist some d with $d \gg D$ and $|\{a \in A : d|a\}| \gg X/D$?

Answer (Chow): No

$$A = \{n!/j : n/2 \le j \le n\}.$$

Point sequences 000000000 Distribution of primes and correlations of zeros

Connections: diophantine approximation

Point sequences

Distribution of primes and correlations of zeros 00000000

Connections: diophantine approximation

Theorem (Dirichlet)

 $\forall \alpha \notin \mathbb{Q}, \exists infinitely many pairs (a,q) coprime s.t. |\alpha - \frac{a}{q}| \leq \frac{1}{q^2}.$

Point sequences

Distribution of primes and correlations of zeros 00000000

Connections: diophantine approximation

Theorem (Dirichlet)

 $\forall \alpha \notin \mathbb{Q}, \exists infinitely many pairs (a,q) coprime s.t. |\alpha - \frac{a}{a}| \leq \frac{1}{a^2}.$

For 'most' α , can replace $\frac{1}{a^2}$ by a smaller function?

Point sequences

Distribution of primes and correlations of zeros $_{\rm OOOOOOOO}$

Connections: diophantine approximation

Theorem (Dirichlet)

 $\forall \alpha \notin \mathbb{Q}, \exists infinitely many pairs (a,q) coprime s.t. |\alpha - \frac{a}{a}| \leq \frac{1}{a^2}.$

For 'most' α , can replace $\frac{1}{a^2}$ by a smaller function?

Theorem (Koukoulopoulos–Maynard, 2020)

$$\Omega_{\psi} := \{ \alpha : \exists \infty ly \ many \ (a,q) \ coprime \ s.t. \ |\alpha - \frac{a}{q}| \leqslant \frac{\psi(q)}{q} \}.$$

Point sequences

Distribution of primes and correlations of zeros 00000000

Connections: diophantine approximation

Theorem (Dirichlet)

 $\forall \alpha \notin \mathbb{Q}, \exists infinitely many pairs (a,q) coprime s.t. |\alpha - \frac{a}{a}| \leq \frac{1}{a^2}.$

For 'most' α , can replace $\frac{1}{a^2}$ by a smaller function?

Theorem (Koukoulopoulos–Maynard, 2020)

$$\Omega_{\psi} := \{ \alpha : \exists \, \infty \, ly \, many \, (a,q) \, coprime \, s.t. \, |\alpha - \frac{a}{q}| \leqslant \frac{\psi(q)}{q} \}.$$

Then
$$\operatorname{meas}(\Omega_{\psi}) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q} < \infty \\ 1 & \text{if } \sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q} = \infty. \end{cases}$$

Point sequences

Distribution of primes and correlations of zeros 00000000

Connections: diophantine approximation

Theorem (Dirichlet)

 $\forall \alpha \notin \mathbb{Q}, \exists infinitely many pairs (a,q) coprime s.t. |\alpha - \frac{a}{a}| \leq \frac{1}{a^2}.$

For 'most' α , can replace $\frac{1}{a^2}$ by a smaller function?

Theorem (Koukoulopoulos–Maynard, 2020)

$$\Omega_{\psi} := \{ \alpha : \exists \infty ly \ many \ (a,q) \ coprime \ s.t. \ |\alpha - \frac{a}{q}| \leqslant \frac{\psi(q)}{q} \}.$$

Then meas(
$$\Omega_{\psi}$$
) =

$$\begin{cases}
0 & \text{if } \sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q} < \infty \\
1 & \text{if } \sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q} = \infty.
\end{cases}$$

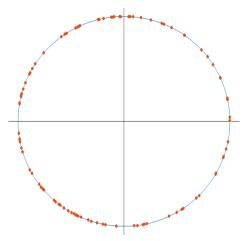
Proof method: analysis of GCD structure of $supp(\psi)$.

Point sequences

Distribution of primes and correlations of zeros $_{\rm OOOOOOO}$

Setting the scene: points on the unit circle

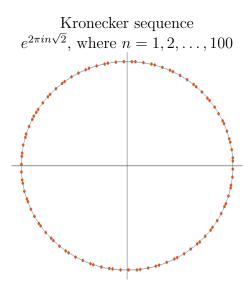
100 independent uniformly random points



Point sequences

Distribution of primes and correlations of zeros $\circ\circ\circ\circ\circ\circ\circ\circ$

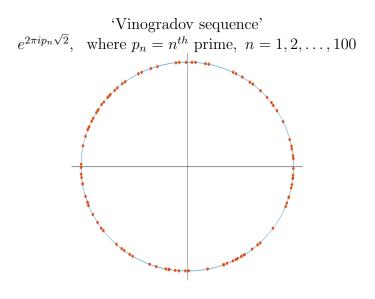
Setting the scene: points on the unit circle



Point sequences

Distribution of primes and correlations of zeros $\circ\circ\circ\circ\circ\circ\circ\circ$

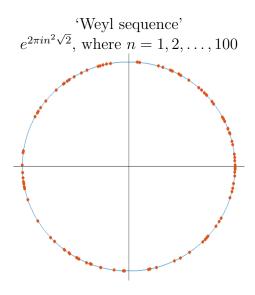
Setting the scene: points on the unit circle



Point sequences

Distribution of primes and correlations of zeros $\circ\circ\circ\circ\circ\circ\circ\circ$

Setting the scene: points on the unit circle



Point sequences

Distribution of primes and correlations of zeros $_{\rm OOOOOOO}$

Consecutive gaps

Given $x_1, x_2, x_3, \ldots \in \mathbb{R}/\mathbb{Z}$, let

$0 \leqslant \beta_1 < \beta_2 < \dots < \beta_N < 1$

be first N elements, in order.

Point sequences

Distribution of primes and correlations of zeros 00000000

Consecutive gaps

Given $x_1, x_2, x_3, \ldots \in \mathbb{R}/\mathbb{Z}$, let

$$0 \leqslant \beta_1 < \beta_2 < \dots < \beta_N < 1$$

be first N elements, in order.

Consider the measure

$$\mu_{k,N} := \frac{1}{N} \sum_{i \leqslant N} \delta_{N(\beta_{i+k} - \beta_i)} \qquad (\delta_s = \text{Dirac mass at } s).$$

Point sequences

Distribution of primes and correlations of zeros 00000000

Consecutive gaps

Given
$$x_1, x_2, x_3, \ldots \in \mathbb{R}/\mathbb{Z}$$
, let

$$0 \leqslant \beta_1 < \beta_2 < \dots < \beta_N < 1$$

be first N elements, in order.

Consider the measure

$$\mu_{k,N} := \frac{1}{N} \sum_{i \leqslant N} \delta_{N(\beta_{i+k} - \beta_i)} \qquad (\delta_s = \text{Dirac mass at } s).$$

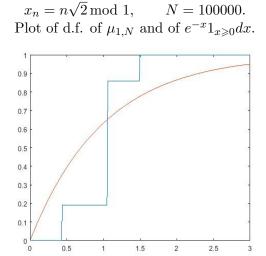
Say $(x_n)_{n=1}^{\infty}$ has poissonian gaps if for all $k \ge 1$,

$$\mu_{k,N} \xrightarrow{w} \frac{e^{-x} x^{k-1}}{(k-1)!} \mathbf{1}_{x \ge 0} \, dx \qquad \text{as } N \to \infty.$$

Point sequences

Distribution of primes and correlations of zeros 00000000

Data

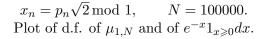


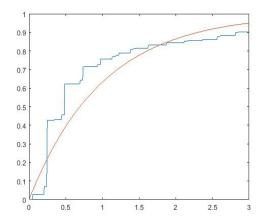
Three-gaps theorem of Sós, Surányi, Świerczkowski (1950s)

Point sequences

Distribution of primes and correlations of zeros 00000000

Data

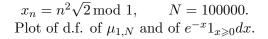


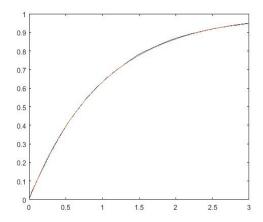


Point sequences

Distribution of primes and correlations of zeros 00000000

Data





Point sequences

Distribution of primes and correlations of zeros 00000000

Central conjecture

Conjecture (Rudnick–Sarnak, 1998)

For almost all $\alpha \in \mathbb{R}$, the sequence $(\alpha n^2 \mod 1)_{n=1}^{\infty}$ has poissonian gaps.

Point sequences

Distribution of primes and correlations of zeros ${\tt ooooooooo}$

Central conjecture

Conjecture (Rudnick–Sarnak, 1998)

For almost all $\alpha \in \mathbb{R}$, the sequence $(\alpha n^2 \mod 1)_{n=1}^{\infty}$ has poissonian gaps.

- motivated by conjectures in physics (gap distribution of eigenvalues of Hamiltonians, Berry–Tabor)
- perhaps very challenging!

Point sequences

Distribution of primes and correlations of zeros

A possible approach: correlation functions

Point sequences

Distribution of primes and correlations of zeros

A possible approach: correlation functions

Pair correlation function: given $f \in C_c^{\infty}(\mathbb{R})$, $(a_n)_{n=1}^{\infty}$ natural numbers

$$R_2(\alpha, L, N, f) := \frac{1}{N} \sum_{\substack{i, j \leq N \\ i \neq j}} f(\frac{N}{L}(\alpha(a_i - a_j) \mod 1)).$$

- $L = N \longrightarrow$ "equidistribution range"
- $L = 1 \longrightarrow$ "gap range"

Point sequences

Distribution of primes and correlations of zeros 00000000

A possible approach: correlation functions

Pair correlation function: given $f \in C_c^{\infty}(\mathbb{R})$, $(a_n)_{n=1}^{\infty}$ natural numbers

$$R_2(\alpha, L, N, f) := \frac{1}{N} \sum_{\substack{i, j \leq N \\ i \neq j}} f(\frac{N}{L}(\alpha(a_i - a_j) \mod 1)).$$

- $L = N \longrightarrow$ "equidistribution range"
- $L = 1 \longrightarrow$ "gap range"
- rich history

Point sequences

Distribution of primes and correlations of zeros

A possible approach: correlation functions

Pair correlation function: given $f \in C_c^{\infty}(\mathbb{R})$, $(a_n)_{n=1}^{\infty}$ natural numbers

$$R_2(\alpha, L, N, f) := \frac{1}{N} \sum_{\substack{i, j \leq N \\ i \neq j}} f(\frac{N}{L}(\alpha(a_i - a_j) \mod 1)).$$

- $L = N \longrightarrow$ "equidistribution range"
- $L = 1 \longrightarrow$ "gap range"
- rich history

 $(a_n)_{n=1}^{\infty}$ has metric poissonian pair correlations if for almost all $\alpha \in \mathbb{R}$ and for all $f \in C_c^{\infty}(\mathbb{R})$

$$R_2(\alpha, 1, N, f) \to \widehat{f}(0)$$
 as $N \to \infty$.

Point sequences

Distribution of primes and correlations of zeros 00000000

Results

Theorem (Rudnick–Sarnak 1998)

For all $d \ge 2$, $(n^d)_{n=1}^{\infty}$ has metric poissonian pair correlations.

Point sequences

Distribution of primes and correlations of zeros ${\tt ooooooooo}$

Results

Theorem (Rudnick–Sarnak 1998)

For all $d \ge 2$, $(n^d)_{n=1}^{\infty}$ has metric poissonian pair correlations.

Theorem (W. 2018)

The primes do not have metric poissonian pair correlations.

 in fact, for most α, one has R₂(α, 1, N, f) ≫ log log N infinitely often.

Point sequences 000000000

Distribution of primes and correlations of zeros 00000000

Results

Theorem (Z. Rudnick, P. Sarnak)

For all $d \ge 2$, $(n^d)_{n=1}^{\infty}$ has metric poissonian pair correlations.

Point sequences 000000000

Distribution of primes and correlations of zeros ${\scriptstyle 00000000}$

Results

Theorem (Z. Rudnick, P. Sarnak)

For all $d \ge 2$, $(n^d)_{n=1}^{\infty}$ has metric poissonian pair correlations.

Theorem (Bloom–W. 2020)

For all increasing sequences $(a_n)_{n=1}^{\infty}$ of natural numbers, $(a_n^2)_{n=1}^{\infty}$ has metric poissonian pair correlations.

Point sequences

Distribution of primes and correlations of zeros ${\tt ooooooooo}$

Handling the primes

Fix an $\alpha \in [0,1]$.

Point sequences 000000000 Distribution of primes and correlations of zeros 00000000

Handling the primes

Fix an $\alpha \in [0, 1]$.

• pick a n, m such that $|\alpha n - m| \leq \frac{1}{100n \log n \log \log n}$ (K-M theorem, works for generic α)

Point sequences 00000000

Distribution of primes and correlations of zeros 00000000

Handling the primes

Fix an $\alpha \in [0, 1]$.

- pick a n, m such that $|\alpha n m| \leq \frac{1}{100n \log n \log \log n}$ (K-M theorem, works for generic α)
- for all $k \leq \log n \log \log n$, write $kn = p_{1,k} p_{2,k}$ in many ways (approximate versions of twin prime conjecture)

Point sequences 000000000 Distribution of primes and correlations of zeros

Handling the primes

Fix an $\alpha \in [0,1]$.

- pick a n, m such that $|\alpha n m| \leq \frac{1}{100n \log n \log \log n}$ (K-M theorem, works for generic α)
- for all $k \leq \log n \log \log n$, write $kn = p_{1,k} p_{2,k}$ in many ways (approximate versions of twin prime conjecture)
- $\alpha(p_{1,k} p_{2,k})$ all contribute to pair correlation function

Point sequences 0000000●0 Distribution of primes and correlations of zeros

Handling the primes

Fix an $\alpha \in [0,1]$.

- pick a n, m such that $|\alpha n m| \leq \frac{1}{100n \log n \log \log n}$ (K-M theorem, works for generic α)
- for all $k \leq \log n \log \log n$, write $kn = p_{1,k} p_{2,k}$ in many ways (approximate versions of twin prime conjecture)
- $\alpha(p_{1,k} p_{2,k})$ all contribute to pair correlation function
- hence pair correlation function is large.

Point sequences

Distribution of primes and correlations of zeros ${\scriptstyle 00000000}$

Point sequences

Distribution of primes and correlations of zeros ${\scriptstyle 00000000}$

Other questions

• density thresholds;

Point sequences

Distribution of primes and correlations of zeros ${\tt ooooooooo}$

- density thresholds;
- additive structure;

Point sequences

Distribution of primes and correlations of zeros ${\tt ooooooooo}$

- density thresholds;
- additive structure;
- higher correlation functions;

Point sequences

Distribution of primes and correlations of zeros ${\tt oooooooo}$

- density thresholds;
- additive structure;
- higher correlation functions;
- nature of the arithmetic content?

Point sequences

Distribution of primes and correlations of zeros ${\color{black}\bullet}{\color{black}\circ}}{\color{black}\circ}{\color{$

Montgomery's pair correlation conjecture: I

Distribution of primes and correlations of zeros ${\scriptstyle \bullet o o o o o o o }$

Montgomery's pair correlation conjecture: I

Let

$$0 < \gamma_1 \leqslant \gamma_2 \leqslant \dots$$

be the imaginary ordinates of the zeros of the Riemann zeta function, with multiplicity, i.e. $\zeta(\sigma_j + i\gamma_j) = 0$.

Distribution of primes and correlations of zeros ${\scriptstyle \bullet o o o o o o o }$

Montgomery's pair correlation conjecture: I

Let

$$0 < \gamma_1 \leqslant \gamma_2 \leqslant \dots$$

be the imaginary ordinates of the zeros of the Riemann zeta function, with multiplicity, i.e. $\zeta(\sigma_j + i\gamma_j) = 0$.

How is the sequence $(\gamma_j)_{j=1}^{\infty}$ distributed?

Distribution of primes and correlations of zeros ${\scriptstyle \bullet o o o o o o o }$

Montgomery's pair correlation conjecture: I

Let

$$0 < \gamma_1 \leqslant \gamma_2 \leqslant \dots$$

be the imaginary ordinates of the zeros of the Riemann zeta function, with multiplicity, i.e. $\zeta(\sigma_j + i\gamma_j) = 0$.

How is the sequence $(\gamma_j)_{j=1}^{\infty}$ distributed?

Riemann–von Mangoldt formula:

$$\sum_{0 \leqslant \gamma_j \leqslant T} 1 \sim \frac{T}{2\pi} \log T.$$

Distribution of primes and correlations of zeros $\bullet o o o o o o o$

Montgomery's pair correlation conjecture: I

Let

$$0 < \gamma_1 \leqslant \gamma_2 \leqslant \dots$$

be the imaginary ordinates of the zeros of the Riemann zeta function, with multiplicity, i.e. $\zeta(\sigma_j + i\gamma_j) = 0$.

How is the sequence $(\gamma_j)_{j=1}^{\infty}$ distributed?

Riemann–von Mangoldt formula:

$$\sum_{0 \leqslant \gamma_j \leqslant T} 1 \sim \frac{T}{2\pi} \log T.$$

What about clustering of the zeros?

Montgomery's pair correlation conjecture II

For fixed $\beta > 0$, can we get asymptotics for

$$\left(\frac{T}{2\pi}\log T\right)^{-1} \#\gamma, \gamma' \in [0,T] \text{ distinct s.t. } 0 < \gamma - \gamma' \leqslant \frac{2\pi\beta}{\log T}?$$

Distribution of primes and correlations of zeros 0000000

Montgomery's pair correlation conjecture II

For fixed $\beta > 0$, can we get asymptotics for

$$\left(\frac{T}{2\pi}\log T\right)^{-1} \#\gamma, \gamma' \in [0,T] \text{ distinct s.t. } 0 < \gamma - \gamma' \leqslant \frac{2\pi\beta}{\log T}?$$

Note: we consider 'the scale of the average gap', namely $\frac{2\pi}{\log T}$.

Distribution of primes and correlations of zeros 0000000

Montgomery's pair correlation conjecture II

For fixed $\beta > 0$, can we get asymptotics for

$$\left(\frac{T}{2\pi}\log T\right)^{-1} \#\gamma, \gamma' \in [0,T] \text{ distinct s.t. } 0 < \gamma - \gamma' \leqslant \frac{2\pi\beta}{\log T}?$$

Note: we consider 'the scale of the average gap', namely $\frac{2\pi}{\log T}$.

Montgomery (1973) conjectured that

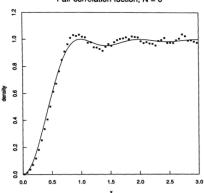
$$N_{\beta}(T) \sim \int_{0}^{\beta} 1 - \left(\frac{\sin \pi u}{\pi u}\right)^2 du$$

as $T \to \infty$.

Point sequences

Distribution of primes and correlations of zeros ${\rm oc}{\rm \bullet}{\rm oc}{\rm oc}{\rm o}{\rm o}$

Odlyzko's data (1987)



Pair correlation fuction, N = 0

FIGURE 1

Pair correlation of zeros of the zeta function. Solid line: GUE prediction. Scatter plot: empirical data based on zeros γ_n , $1 \le n \le 10^5$.

Point sequences 00000000 Distribution of primes and correlations of zeros $\tt 00000000$

Variance of primes

Λ(n) = log p is n = p^k for some k (and is zero otherwise)
ψ(x) = ∑_{n≤x} Λ(n).

Point sequences 00000000 Distribution of primes and correlations of zeros $\tt 00000000$

Variance of primes

- $\Lambda(n) = \log p$ is $n = p^k$ for some k (and is zero otherwise)
- $\psi(x) = \sum_{n \leqslant x} \Lambda(n).$
- RH $\Leftrightarrow \psi(x) = x + O_{\varepsilon}(x^{1/2 + \varepsilon}).$

Point sequences 000000000 Distribution of primes and correlations of zeros $\tt 00000000$

Variance of primes

• $\Lambda(n) = \log p$ is $n = p^k$ for some k (and is zero otherwise)

•
$$\psi(x) = \sum_{n \leqslant x} \Lambda(n).$$

• RH $\Leftrightarrow \psi(x) = x + O_{\varepsilon}(x^{1/2 + \varepsilon}).$

Theorem (Goldston-Montgomery '84)

Assume RH. Then Montgomery's conjecture is equivalent to the following. For all $\varepsilon > 0$, and for all $h \leq X^{1-\varepsilon}$,

$$\int_{0}^{X} (\psi(x+h) - \psi(x) - h)^2 \, dx = (1 + o_{\varepsilon}(1))hX \log(X/h)$$

as $X \to \infty$.

Point sequences

Distribution of primes and correlations of zeros $\tt oooooooo$

Links to twin prime conjecture

Point sequences

Distribution of primes and correlations of zeros $\tt 00000000$

Links to twin prime conjecture

Theorem (observed by Montgomery, later work of Bogomolny, Bolanz, Chan, Goldston, Keating, Soundararajan...)

Assume RH. Let $\varepsilon > 0$. Suppose that there is some $\eta \in [1/2, 1)$ such that for all $1 \leq k \leq X^{1-\varepsilon}$ we have

$$\sum_{n \leq X-k} \Lambda(n)\Lambda(n+k) = \mathfrak{S}(k)(X-k) + O_{\varepsilon}(X^{\eta+\varepsilon}),$$

where $\mathfrak{S}(k)$ is a certain explicit function of k. Then for all $h \leq X^{1-\eta}$,

$$\int_{0}^{X} (\psi(x+h) - \psi(x) - h)^2 \, dx = (1 + o_{\varepsilon}(1))hX\log(X/h)$$

as $X \to \infty$.

Point sequences

Distribution of primes and correlations of zeros ${\tt ooooooooo}$

Lower bounds

Distribution of primes and correlations of zeros ${\tt ooooooooo}$

Lower bounds

Theorem (Goldston–Gonek–Özlük–Snyder 2000)

Assume GRH for Dirichlet L-functions. Let $\varepsilon > 0$. Then for all $h \leq X^{1/3-\varepsilon}$,

$$\int_{0}^{\infty} (\psi(x+h) - \psi(x) - h)^2 dx \ge \left(\frac{1}{2} - o_{\varepsilon}(1)\right) hX \log(X/h^3).$$

(Goldston-Yildrim)

Under stronger (but standard) assumptions on the distribution of primes in arithmetic progressions, one can improve this.

Point sequences 000000000 Distribution of primes and correlations of zeros oooooooo

Lower bounds

Theorem (W. 2021+)

Suppose that

$$\psi(x;q,a) = \mathbb{1}_{(a,q)=1} \frac{x}{\varphi(q)} + O_{\varepsilon} \left(\frac{x^{1/2+\varepsilon}}{q^{1/2}}\right)$$

for all $x \ge 1$, $q < x^{27/53}$, and $a \le q$.

Point sequences 000000000 Distribution of primes and correlations of zeros oooooooo

Lower bounds

Theorem (W. 2021+)

Suppose that

$$\psi(x;q,a) = \mathbb{1}_{(a,q)=1} \frac{x}{\varphi(q)} + O_{\varepsilon} \left(\frac{x^{1/2+\varepsilon}}{q^{1/2}}\right)$$

for all $x \ge 1$, $q < x^{27/53}$, and $a \le q$. Then, for all $\varepsilon > 0$, for all $h \le X^{\frac{1}{95}-\varepsilon}$,

$$\int_{0}^{X} (\psi(x+h) - \psi(x) - h)^2 \, dx \ge \left(\frac{27}{53} - o_{\varepsilon}(1)\right) h X \log\left(\frac{X}{h^{\frac{127}{27}}}\right).$$

Point sequences

Distribution of primes and correlations of zeros $\texttt{oooooooo} \bullet$

Comments

• the bounds agree at the end-point $h = X^{\frac{1}{95}}$!

Point sequences 000000000 Distribution of primes and correlations of zeros $\verb"oooooooo"$

Comments

- the bounds agree at the end-point $h = X^{\frac{1}{95}}$!
- Method: replace $\Lambda(n)$ with an 'approximating sieve weight'

$$\lambda_Q(n) = \sum_{d|n} \frac{d\mu(d)}{\varphi(d)} \sum_{\substack{q \leqslant Q/d \\ (q,d)=1}} \frac{\mu^2(q)}{\varphi(q)}.$$

Use the fact that divisors d are restricted to $d \leq Q$.

Point sequences 000000000 Distribution of primes and correlations of zeros $\verb"oooooooo"$

Comments

- the bounds agree at the end-point $h = X^{\frac{1}{95}}$!
- Method: replace $\Lambda(n)$ with an 'approximating sieve weight'

$$\lambda_Q(n) = \sum_{d|n} \frac{d\mu(d)}{\varphi(d)} \sum_{\substack{q \leqslant Q/d \\ (q,d)=1}} \frac{\mu^2(q)}{\varphi(q)}.$$

Use the fact that divisors d are restricted to $d \leq Q$.

• Poisson summation + 'Kloosterman fractions'.

Point sequences 000000000 Distribution of primes and correlations of zeros $\verb"oooooooo"$

Comments

- the bounds agree at the end-point $h = X^{\frac{1}{95}}$!
- Method: replace $\Lambda(n)$ with an 'approximating sieve weight'

$$\lambda_Q(n) = \sum_{d|n} \frac{d\mu(d)}{\varphi(d)} \sum_{\substack{q \leqslant Q/d \\ (q,d)=1}} \frac{\mu^2(q)}{\varphi(q)}.$$

Use the fact that divisors d are restricted to $d \leq Q$.

• Poisson summation + 'Kloosterman fractions'.

Thank you for your attention!