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Plan

Lunchtime talk = three-course meal

Starter
Sets of integers with large GCDs (≈ combinatorial, 10 mins);

Main course
Local distribution of point sequences (≈ probabilistic, 20 mins);

Dessert
Distribution of primes in short intervals, and zeros of ζ(s)
(≈ number-theoretic, 10 mins);
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Warm-up

Question 1

Suppose A ⊂ [1, X] is a set of natural numbers with
gcd(a, a′) ⩾ D for every pair (a, a′) ∈ A×A. How large can |A|
be?

The example A = {n ⩽ X : D|n} shows that |A| ⩾ X/D is
possible.

Conjecture

Suppose A ⊂ [1, X] is a set of natural numbers with
gcd(a, a′) ⩾ D for every pair (a, a′) ∈ A×A. Then
|A| = O(X/D).

Solution (Z. Chase): Conjecture is true (pigeonhole).
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The ‘real’ question

Question 2

Let δ > 0, and suppose A ⊂ [1, X] is a set of natural numbers
with gcd(a, a′) ⩾ D for δ|A|2 pairs (a, a′) ∈ A×A. Is it true
that |A| = Oδ(X/D)?

Theorem (Green–W. 2021)

Under above hypotheses, |A| ≪ O(δ−1.001X/D).

Proof method:

study structure of the bipartite graph (A×A, E), where
(a, a′) ∈ E if gcd(a, a′) ⩾ D;

for each prime p, iterate according to whether p|a and p|a′
(4 subgraphs...).
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A ‘structural’ question

Must all the ‘greatest common divisor’ mass be explained by a
single large common divisor?

Question 3, Koukoulopoulos–Maynard

Suppose that A ⊂ [1, X] is a set of natural numbers with
gcd(a, a′) ⩾ D for 0.01|A|2 pairs (a, a′) ∈ A×A and
|A| ≫ X/D. Must there exist some d with d≫ D and
|{a ∈ A : d|a}| ≫ X/D?

Answer (Chow): No

A = {n!/j : n/2 ⩽ j ⩽ n}.
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Connections: diophantine approximation

Theorem (Dirichlet)

∀α /∈ Q, ∃ infinitely many pairs (a, q) coprime s.t. |α− a
q | ⩽

1
q2
.

For ‘most’ α, can replace 1
q2

by a smaller function?

Theorem (Koukoulopoulos–Maynard, 2020)

Ωψ := {α : ∃∞ly many (a, q) coprime s.t. |α− a
q | ⩽

ψ(q)
q }.

Then meas(Ωψ) =

{
0 if

∑∞
q=1

φ(q)ψ(q)
q <∞

1 if
∑∞

q=1
φ(q)ψ(q)

q = ∞.

Proof method: analysis of GCD structure of supp(ψ).
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Setting the scene: points on the unit circle

100 independent uniformly random points
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Setting the scene: points on the unit circle

Kronecker sequence

e2πin
√
2, where n = 1, 2, . . . , 100
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Setting the scene: points on the unit circle

‘Vinogradov sequence’

e2πipn
√
2, where pn = nth prime, n = 1, 2, . . . , 100
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Setting the scene: points on the unit circle

‘Weyl sequence’

e2πin
2
√
2, where n = 1, 2, . . . , 100
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Consecutive gaps

Given x1, x2, x3, . . . ∈ R/Z, let

0 ⩽ β1 < β2 < · · · < βN < 1

be first N elements, in order.

Consider the measure

µk,N :=
1

N

∑
i⩽N

δN(βi+k−βi) (δs = Dirac mass at s).

Say (xn)
∞
n=1 has poissonian gaps if for all k ⩾ 1,

µk,N
w−→ e−xxk−1

(k − 1)!
1x⩾0 dx as N → ∞.
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Data

xn = n
√
2mod 1, N = 100000.

Plot of d.f. of µ1,N and of e−x1x⩾0dx.

Three-gaps theorem of Sós, Surányi, Świerczkowski (1950s)
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Data

xn = pn
√
2mod 1, N = 100000.

Plot of d.f. of µ1,N and of e−x1x⩾0dx.
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Data

xn = n2
√
2mod 1, N = 100000.

Plot of d.f. of µ1,N and of e−x1x⩾0dx.
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Central conjecture

Conjecture (Rudnick–Sarnak, 1998)

For almost all α ∈ R, the sequence (αn2mod 1)∞n=1 has
poissonian gaps.

motivated by conjectures in physics (gap distribution of
eigenvalues of Hamiltonians, Berry–Tabor)

perhaps very challenging!
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A possible approach: correlation functions

Pair correlation function: given f ∈ C∞
c (R), (an)∞n=1 natural

numbers

R2(α,L,N, f) :=
1

N

∑
i,j⩽N
i ̸=j

f(
N

L
(α(ai − aj)mod 1)).

L = N −→ “equidistribution range”

L = 1 −→ “gap range”

rich history

(an)
∞
n=1 has metric poissonian pair correlations if for

almost all α ∈ R and for all f ∈ C∞
c (R)

R2(α, 1, N, f) → f̂(0) as N → ∞.
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Results

Theorem (Rudnick–Sarnak 1998)

For all d ⩾ 2, (nd)∞n=1 has metric poissonian pair correlations.

Theorem (W. 2018)

The primes do not have metric poissonian pair correlations.

in fact, for most α, one has R2(α, 1, N, f) ≫ log logN
infinitely often.
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Results

Theorem (Z. Rudnick, P. Sarnak)

For all d ⩾ 2, (nd)∞n=1 has metric poissonian pair correlations.

Theorem (Bloom–W. 2020)

For all increasing sequences (an)
∞
n=1 of natural numbers,

(a2n)
∞
n=1 has metric poissonian pair correlations.
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Handling the primes

Fix an α ∈ [0, 1].

pick a n,m such that |αn−m| ⩽ 1
100n logn log logn (K-M

theorem, works for generic α)

for all k ⩽ log n log log n, write kn = p1,k − p2,k in many
ways (approximate versions of twin prime conjecture)

α(p1,k − p2,k) all contribute to pair correlation function

hence pair correlation function is large.
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Other questions

density thresholds;

additive structure;

higher correlation functions;

nature of the arithmetic content?
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Montgomery’s pair correlation conjecture: I

Let
0 < γ1 ⩽ γ2 ⩽ . . .

be the imaginary ordinates of the zeros of the Riemann zeta
function, with multiplicity, i.e. ζ(σj + iγj) = 0.

How is the sequence (γj)
∞
j=1 distributed?

Riemann–von Mangoldt formula:∑
0⩽γj⩽T

1 ∼ T

2π
log T.

What about clustering of the zeros?
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What about clustering of the zeros?
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Montgomery’s pair correlation conjecture II

For fixed β > 0, can we get asymptotics for( T
2π

log T
)−1

#γ, γ′ ∈ [0, T ] distinct s.t. 0 < γ − γ′ ⩽
2πβ

log T
?

Note: we consider ‘the scale of the average gap’, namely 2π
log T .

Montgomery (1973) conjectured that

Nβ(T ) ∼
β∫

0

1−
(sinπu

πu

)2
du

as T → ∞.
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Odlyzko’s data (1987)
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Variance of primes

Λ(n) = log p is n = pk for some k (and is zero otherwise)

ψ(x) =
∑

n⩽x Λ(n).

RH ⇔ ψ(x) = x+Oε(x
1/2+ε).

Theorem (Goldston-Montgomery ’84)

Assume RH. Then Montgomery’s conjecture is equivalent to
the following. For all ε > 0, and for all h ⩽ X1−ε,

X∫
0

(ψ(x+ h)− ψ(x)− h)2 dx = (1 + oε(1))hX log(X/h)

as X → ∞.
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Links to twin prime conjecture

Theorem (observed by Montgomery, later work of Bogomolny,
Bolanz, Chan, Goldston, Keating, Soundararajan...)

Assume RH. Let ε > 0. Suppose that there is some η ∈ [1/2, 1)
such that for all 1 ⩽ k ⩽ X1−ε we have∑

n⩽X−k
Λ(n)Λ(n+ k) = S(k)(X − k) +Oε(X

η+ε),

where S(k) is a certain explicit function of k. Then for all
h ⩽ X1−η,

X∫
0

(ψ(x+ h)− ψ(x)− h)2 dx = (1 + oε(1))hX log(X/h)

as X → ∞.
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Lower bounds

Theorem (Goldston–Gonek–Özlük–Snyder 2000)

Assume GRH for Dirichlet L-functions. Let ε > 0. Then for all
h ⩽ X1/3−ε,

∞∫
0

(ψ(x+ h)− ψ(x)− h)2 dx ⩾
(1
2
− oε(1)

)
hX log(X/h3).

(Goldston–Yildrim)

Under stronger (but standard) assumptions on the distribution
of primes in arithmetic progressions, one can improve this.
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Lower bounds

Theorem (W. 2021+)

Suppose that

ψ(x; q, a) = 1(a,q)=1
x

φ(q)
+Oε

(x1/2+ε
q1/2

)
for all x ⩾ 1, q < x27/53, and a ⩽ q.

Then, for all ε > 0, for all
h ⩽ X

1
95

−ε,

X∫
0

(ψ(x+ h)− ψ(x)− h)2 dx ⩾
(27
53

− oε(1)
)
hX log

( X

h
127
27

)
.
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Comments

the bounds agree at the end-point h = X
1
95 !

Method: replace Λ(n) with an ‘approximating sieve weight’

λQ(n) =
∑
d|n

dµ(d)

φ(d)

∑
q⩽Q/d
(q,d)=1

µ2(q)

φ(q)
.

Use the fact that divisors d are restricted to d ⩽ Q.

Poisson summation + ‘Kloosterman fractions’.

Thank you for your attention!
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