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Starter
Sets of integers with large GCDs (&~ combinatorial, 10 mins);

Main course
Local distribution of point sequences (/= probabilistic, 20 mins);

Dessert
Distribution of primes in short intervals, and zeros of ((s)
(~ number-theoretic, 10 mins);
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Question 1

Suppose A C [1, X] is a set of natural numbers with
ged(a,a’) > D for every pair (a,a’) € A x A. How large can |A]
be?

The example A = {n < X : D|n} shows that |A| > X/D is
possible.

Conjecture

Suppose A C [1, X] is a set of natural numbers with
ged(a,a’) > D for every pair (a,a’) € A x A. Then
|A| = O(X/D).

Solution (Z. Chase): Conjecture is true (pigeonhole).



The ‘real’ question

Question 2

Let § > 0, and suppose A C [1, X] is a set of natural numbers
with ged(a,a’) = D for §|A|? pairs (a,a’) € A x A. Is it true
that |A| = Os(X/D)?
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The ‘real’ question

Question 2

Let 6 > 0, and suppose A C [1, X] is a set of natural numbers
with ged(a,a’) = D for §|A|? pairs (a,a’) € A x A. Is it true
that |A| = Os(X/D)?

Theorem (Green-W. 2021)

Under above hypotheses, |A| < O(6~ 191X/ D).

Proof method:
e study structure of the bipartite graph (A x A, ), where
(a,d') € E if ged(a,d’) > D;
e for each prime p, iterate according to whether p|a and p|a’
(4 subgraphs...).
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A ‘structural’ question

Must all the ‘greatest common divisor’ mass be explained by a
single large common divisor?

Question 3, Koukoulopoulos—Maynard

Suppose that A C [1, X] is a set of natural numbers with
ged(a,a’) = D for 0.01|AJ? pairs (a,a’) € A x A and

|A| > X/D. Must there exist some d with d > D and
{a € A:d|a}| > X/D?

Answer (Chow): No

A={nl/j:n/2 <j<n}
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Connections: diophantine approximation

Theorem (Dirichlet)

Va ¢ Q, 3 infinitely many pairs (a,q) coprime s.t. |o — f\ %

For ‘most’ «, can replace > by a smaller function?

Theorem (Koukoulopoulos—Maynard, 2020)
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Theorem (Dirichlet)
Va ¢ Q, 3 infinitely many pairs (a,q) coprime s.t. |o — f\ Z

For ‘most’ «, can replace > by a smaller function?

Theorem (Koukoulopoulos—Maynard, 2020)

L ' _al ¢ %@
Qy = {a: Fooly many (a,q) coprime s.t. |« q] <5 }.

0 Zfzoo wq);b)<oo
1 Zchoo <pq)w)_00.

Then meas(dy) = {

Proof method: analysis of GCD structure of supp(?).
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Setting the scene: points on the unit circle

100 independent uniformly random points
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Setting the scene: points on the unit circle

Kronecker sequence
e2™nV2 where n = 1,2,...,100
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Setting the scene: points on the unit circle

‘“Vinogradov sequence’
2™ irnV2 - where p, = n'" prime, n =1,2,...,100
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Setting the scene: points on the unit circle

‘Weyl sequence’
e V2 where n = 1,2,...,100
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be first N elements, in order.
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Consecutive gaps

Given z1, 22, 13,... € R/Z, let
0<Pi<Po<---<PBn<1

be first N elements, in order.

Consider the measure

1 .
N = Z ON(Birn—Bs) (65 = Dirac mass at s).
i<N

Say (zn)22, has poissonian gaps if for all k > 1,

1,>0dx as N — oo.
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Zn, = nv2mod 1, N = 100000.
Plot of d.f. of j11,n and of e™*1,>0dz.
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Three-gaps theorem of Sés, Surdnyi, Swierczkowski (1950s)
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Ty = pn\/§m0d 1, N = 100000.
Plot of d.f. of 1 n and of e™*1,>0dx.
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Zn = n%v2mod 1, N = 100000.
Plot of d.f. of 1 n and of e *1,>0dx.
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Central conjecture

Conjecture (Rudnick-Sarnak, 1998)
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o 1 has

For almost all o € R, the sequence (an?® mod 1)
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Central conjecture

Conjecture (Rudnick-Sarnak, 1998)

o0

o 1 has

For almost all o € R, the sequence (an?® mod 1)
poissonLan gaps.

e motivated by conjectures in physics (gap distribution of
eigenvalues of Hamiltonians, Berry—Tabor)

@ perhaps very challenging!
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A possible approach: correlation functions

Pair correlation function: given f € C°(R), (a,)o; natural

numbers
Ry(a, L, N, f) : —Zf a; — aj) mod 1)).
i, jJ<N
i#£]

o L = N — “equidistribution range”
e L =1— “gap range”
o rich history

(an)y2; has metric poissonian pair correlations if for
almost all @ € R and for all f € C°(R)

Ry(o, 1,N, f) = F(0)  as N — oo.
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Results

Theorem (Rudnick—Sarnak 1998)

For all d > 2, (n®)22, has metric poissonian pair correlations.
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Results

Theorem (Rudnick—Sarnak 1998)

For all d > 2, (n®)22, has metric poissonian pair correlations.

Theorem (W. 2018)

The primes do not have metric poissonian pair correlations.

e in fact, for most «, one has Ra(a, 1, N, f) > loglog N
infinitely often.
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Results

Theorem (Z. Rudnick, P. Sarnak)

For all d > 2, (nd)fle has metric poissonian pair correlations.
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Results

Theorem (Z. Rudnick, P. Sarnak)

For all d > 2, (nd)fle has metric poissonian pair correlations.

Theorem (Bloom—W. 2020)

For all increasing sequences (ayn)32, of natural numbers,
(a2)2°_, has metric poissonian pair correlations.

n=1
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Handling the primes

Fix an « € [0,1].
@ pick a n,m such that |an — m| < m (K-M
theorem, works for generic «)

o for all k£ < lognloglogn, write kn = p; ; — p2 & in many
ways (approximate versions of twin prime conjecture)

o o(p1k — p2,k) all contribute to pair correlation function

@ hence pair correlation function is large.
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Other questions

density thresholds;

o additive structure;

higher correlation functions;

nature of the arithmetic content?
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Montgomery’s pair correlation conjecture: I

Let
0<’)/1<’72<...

be the imaginary ordinates of the zeros of the Riemann zeta
function, with multiplicity, i.e. ((o; 4 iv;) = 0.

How is the sequence (v;)72; distributed?

Riemann—von Mangoldt formula:



Distribution of primes and correlations of zeros
00000000

Montgomery’s pair correlation conjecture: I

Let
0<’)/1<’72<...

be the imaginary ordinates of the zeros of the Riemann zeta
function, with multiplicity, i.e. ((o; 4 iv;) = 0.

How is the sequence (v;)72; distributed?

Riemann—von Mangoldt formula:

What about clustering of the zeros?
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Montgomery’s pair correlation conjecture II

For fixed 8 > 0, can we get asymptotics for
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(2— log T) #v,~' €[0,T] distinct s.t. 0 <v—+" <
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Montgomery’s pair correlation conjecture II

For fixed 8 > 0, can we get asymptotics for

21 0
logT"

T -1
(2— log T) #v,~' €[0,T] distinct s.t. 0 <v—+" <
T

Note: we consider ‘the scale of the average gap’, namely ; OQg”T.

Montgomery (1973) conjectured that

B
N(T) N/l— (sin7ru>2du
0

U

as T — oo.
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Odlyzko’s data (1987)

Pair correlation fuction, N = 0
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FIGURE 1
Pair correlation of zeros of the zeta function. Solid line: GUE
prediction. Scatter plot: empirical data based on zeros v,,
1<n<10%
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Variance of primes

o A(n) =logp is n = p* for some k (and is zero otherwise)

o Y(x) = Xper Mn).
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Variance of primes

o A(n) =logp is n = p* for some k (and is zero otherwise)
o () =3 pcp An).
o RH < o(z) = z + O.(z/>9).

Theorem (Goldston-Montgomery ’84)

Assume RH. Then Montgomery’s conjecture is equivalent to
the following. For all € > 0, and for all h < X'7¢,

/ (z+ h) — (x) — h)? dz = (1 + 0. (1))hX log(X/h)
0

as X — oo.
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Links to twin prime conjecture

Theorem (observed by Montgomery, later work of Bogomolny,
Bolanz, Chan, Goldston, Keating, Soundararajan...)

Assume RH. Let € > 0. Suppose that there is some n € [1/2,1)
such that for all 1 < k < X1=¢ we have

> Am)A(n+ k) = S(k)(X — k) + O-(X7F¢),
n<X—k

where S(k) is a certain explicit function of k. Then for all
h <X,

X

/(w(x +h) = (@) — )2 dz = (1 + 0. (1))hX log(X/R)

0

as X — o0.
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Lower bounds

Theorem (Goldston-Gonek-Ozlitk-Snyder 2000)

Assume GRH for Dirichlet L-functions. Let € > 0. Then for all
h < Xl/st;
2 1 3
/ z+h) —d(z) — h)?dr > (5 - 05(1))thog(X/h ).
0
(Goldston—Yildrim)

Under stronger (but standard) assumptions on the distribution
of primes in arithmetic progressions, one can improve this.
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Lower bounds

Theorem (W. 2021+)
Suppose that

Q;Z)(I; q’a) = 1(a,q):1@ + OE(W

forallz >1, g < 227/53 and a < q.
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Lower bounds

Theorem (W. 2021+)
Suppose that

1/24€
o0 " Of(quz)

for all a: 1, g < z2"/% and a < q. Then, for all e > 0, for all
h < X95 5,

Q;Z)(I; q, (L) = 1(a,q):1

X
/ bz +h) — ()—h)de2(§—;—og( ))thog(}ﬁ%).
0
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Comments

@ the bounds agree at the end-point h = X 51
@ Method: replace A(n) with an ‘approximating sieve weight’
dp(d) 12 (q)
Yo =20y 2 G
dln q<Q/d
(g,d)=1

Use the fact that divisors d are restricted to d < Q.

o Poisson summation + ‘Kloosterman fractions’.

Thank you for your attention!
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